The time-course of thermoregulatory responses during treadmill running is associated with running duration-dependent hypothalamic neuronal activation in rats

This study evaluated the hypothalamic neuronal activation during exercise and investigated whether this activation is related to heat storage and exercise duration. Rats were subjected to a treadmill running that was interrupted at three different moments: (1) at the early phase, when minimal heat dissipation occurred due to tail vasoconstriction and the tail skin temperature (Tskin) reached its nadir; (2) at the steady-state phase, when both theTskin and core body temperature (Tcore) plateaued at a high level (~  20 min); and (3) at fatigue, whenTcore andTskin were still elevated. c-Fos expression in the medial and ventromedial preoptic areas (mPOA and vmPOA), median preoptic nucleus (MnPO), paraventricular and supraoptic nucleus (PVN and SON), and septohypothalamic nucleus (SHy) was determined. Exercise increased the expression of c-Fos in all brain areas, but with different activation patterns of activation. c-Fos expression in the SHy and vmPOA was similar in all exercising groups, while in the mPOA, MnPO, and PVN, c-Fos expression gradually increased during exercise. Increased c-Fos in the SON was only evident after 20  min of exercise. Neuronal activation in the mPOA, MnPO, PVN, and SON was positively correlated with both exercise duration and heat storage. Our findings indicate that with the exception of SON, the brain areas analyzed are recruited following small changes inTcore (~  0.5 °C), while the SON is recruited only whenTcore reaches higher values (great...
Source: Anatomy and Embryology - Category: Anatomy Source Type: research