Bi- and trinuclear copper(I) compounds of 2,2,5,5-tetramethyl-imidazolidine-4-thione and 1,2-bis(diphenylphosphano)ethane: Synthesis, crystal structures, in vitro and in silico study of antibacterial activity and interaction with DNA and albumins.

Bi- and trinuclear copper(I) compounds of 2,2,5,5-tetramethyl-imidazolidine-4-thione and 1,2-bis(diphenylphosphano)ethane: Synthesis, crystal structures, in vitro and in silico study of antibacterial activity and interaction with DNA and albumins. J Inorg Biochem. 2019 Jun 08;198:110750 Authors: Anastasiadou D, Psomas G, Kalogiannis S, Geromichalos G, Hatzidimitriou AG, Aslanidis P Abstract Herein we report on the synthesis, molecular structures, DNA-binding properties and antibacterial activity of four new copper(I) mixed-ligand complexes obtained by reacting copper(I) halides or [Cu(CH3CN)4](BF4) with 1,2-bis(diphenylphosphano)ethane (dppe) and 2,2,5,5-tetramethylimidazolidine-4-thione (tmimdtH). Depending on the nature of the halide, the resulting compounds adopt two different structural motifs. Thus, using CuCl or CuBr, doubly dppe-bridged symmetrical dimmers of type [(κ-S-tmimdtH)XCu(μ-dppe)2CuX(κ-S-tmimdtH)] are formed, while in the case of CuI, a rare example of a trinuclear complex was isolated, in which the Cu atom of a CuI(tmimdtH) moiety is linked by two bridging dppe units with the two Cu atoms of a cluster-type Cu2I2(dppe) core. On the other hand, [Cu(CH3CN)4](BF4) reacts with the anion of tmimdtH in the presence of dppe to form a binuclear complex consisting of two (dppe)Cu(tmimdt) units linked together by the P atoms of a dppe bridging ligand. The complexes show significant in vitro antibacterial activity against ce...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research
More News: Biochemistry | Copper | Science | Study