An ultrasensitive electrochemical anti-Lysozyme aptasensor with biorecognition Surface based on aptamer/amino-rGO/ionic liquid/amino-mesosilica nanoparticles

Publication date: Available online 15 May 2019Source: Colloids and Surfaces B: BiointerfacesAuthor(s): Hamid Reza Jamei, Behzad Rezaei, Ali Asghar EnsafiAbstractIn this work, a novel method based on aptamers is proposed for electrochemical measurement of lysozyme. To this end, screen-printed carbon electrode (SPCE) was modified with a nanocomposite made from amino-reduced graphene oxide (Amino-rGO) synthesized from natural graphite powder, an ionic liquid (IL), and amino-mesosilica nanoparticles (Amino-MSNs). The composition of the nanocomposite (Amino-rGO/IL/Amino-MSNs) results in high thermal and chemical stability, conductivity, surface-to-volume ratio, cost efficiency, biocompatibility, and great bioelectrocatalysis characteristics. Presence of numerous amino groups, as well as remaining oxygen defects in rGO, provides a suitable site for immobilization of aptamers. Furthermore, use of this nanocomposite leads to considerable enhancement of the electrochemical signal and improved method sensitivity. Covalent coupling of aptamer’s amino groups with that of the nanocomposite using glutaraldehyde (GLA) as a linker helps immobilize amino-linked lysozyme aptamers (Anti-Lys aptamers) on nanocomposite. The modified electrode was characterized using electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The immobilized aptamer selectively adsorbs lysozyme (Lys) on the electrode interface, ...
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research