Unraveling the structural elements of pH sensitivity and substrate binding in the human zinc transporter SLC39A2 (ZIP2) [Protein Structure and Folding]

The transport and ion-coupling mechanisms of ZIP transporters remain largely uncharacterized. Previous work in our laboratory has revealed that the solute carrier family 39 member A2 (SLC39A2/ZIP2) increases its substrate transport rate in the presence of extracellular H+. Here, we used a combination of in silico and in vitro techniques involving structural modeling, mutagenesis, and functional characterization in HEK293 cells to identify amino acid residues potentially relevant for both the ZIP2–H+ interaction and substrate binding. Our ZIP2 models revealed a cluster of charged residues close to the substrate–translocation pore. Interestingly, the H63A substitution completely abrogated pH sensitivity, and substitutions of Glu-67 and Phe-269 altered the pH and voltage modulation of transport. In contrast, substitution of Glu-106, which might be part of a dimerization interface, altered pH but not voltage modulation. Substitution of Phe-269, located close to the substrate-binding site, also affected substrate selectivity. These findings were supported by an additional model of ZIP2 that was based on the structure of a prokaryotic homolog, Bordetella bronchiseptica ZrT/Irt-like protein (bbZIP), and in silico pKa calculations. We also found that residues Glu-179, His-175, His-202, and Glu-276 are directly involved in the coordination of the substrate metal ion. We noted that, unlike bbZIP, human ZIP2 is predicted to harbor a single divalent metal-binding site, with the charg...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Membrane Biology Source Type: research