Survival of a novel endophytic fungus Phomopsis liquidambari B3 in the indole-contaminated soil detected by real-time PCR and its effects on the indigenous microbial community

In this study, a specific real-time PCR was developed to detect the survival of P. liquidambari B3 in soil. Subsequently, degradation activity of strain B3 and its effects on indigenous microbial community were analyzed. Results showed the amount of P. liquidambari B3 genomic DNA increased to a maximum 5.67 log (pgg−1 dry soil) 10 days after inoculation of 5.04 log (pgg−1 dry soil), and then gradually decreased with time and after 40 days it was below the detection limit. By the end of the experiment (day 40), bioaugmented microsoms showed a 93.7% decrease in indole, while the values for biostimulated and control microcosms were much lower. Higher microbial biomass and enzyme activities were observed in bioaugmented soil. Denaturing gradient gel electrophoresis analysis showed bioaugmentation increased richness of resident microbial community. These results indicate that P. liquidambari B3 is effective for the remediation of indole-contaminated soil and also provides valuable information about the behavior of the inoculant population during bioremediation, which could be directly used in the risk assessment of inoculant population and optimization of bioremediation process.
Source: Microbiological Research - Category: Infectious Diseases Source Type: research