Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: synergistic effect in cancer therapy.

Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: synergistic effect in cancer therapy. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1396-1403 Authors: Esmaeili Govarchin Ghaleh H, Zarei L, Mansori Motlagh B, Jabbari N Abstract The aim of this paper was examining the combined impacts of CuO nanoparticles (CuO NPs), hyperthermia (H), and irradiation (R) on an increment of MCF-7 cells. The MTT assay was employed to assess the antiproliferative effects of CuO NPs (25, 50, and 100 μg/ml), hyperthermia (41 °C for 1 h), and irradiation (200 cGy). Moreover, the perniciousness was estimated through the survival capability of cells, and apoptosis, ROS production, and levels of caspase-3, -8 and -9 proteins were determined. A significant (p < .01) decrease in proliferation index (0.124 ± 0.021), a significant (p < .01) increase in apoptosis (42% ± 1.54) of MCF7 cells, a significant (p < .03) increase in ROS formation (32.16 ± 1.9) and a significant (p < .01) increase in LDH release (33.28 ± 1.56) were recorded in the adjacency of MCF-7 cells by a combination of CuO NPs (100 µg/ml) and R + H compared to control and other treatments. The activities of caspase-3 (0.33 ± 0.014) and caspase-9 (0.389 ± 0.019) also increased significantly (p < .05). However, caspase-8 showed no significant changes in its activity (p = .065). Based on these observations, a combination of CuO NPs, hyperthermia, and i...
Source: Artificial Cells, Nanomedicine and Biotechnology - Category: Biotechnology Tags: Artif Cells Nanomed Biotechnol Source Type: research