Synthesis of carbon dots with a tunable photoluminescence and their applications for the detection of acetone and hydrogen peroxide

In this study, green emissive nitrogen-doped carbon dots (N-CDs) are synthesized from p-hydroquinone and ethylenediamine through a simple hydrothermal method. The as-prepared N-CDs possess a robust excitation-independent green luminescence and a high PLQY of up to 15.9%. Further spectroscopic characterization indicates that the high PLQY is achieved by the balance of nitrogen doping states and the surface passivation extent in CDs. The N-CDs also exhibit solvent-dependent multi-color emissive property and distinct PLQY in different solvents (the maximum can reach up to 25.3%). Furthermore, the as-prepared N-CDs are applied as fluorescence probes to detect acetone and H2O2 in water. This method has exhibited a low detection limit of acetone (less than 0.1%) and a quick and linear response to the H2O2 with the concentration from 0 to 120 μmol/L. This work broadens the knowledge of applying CDs as probes in the bio and chemical sensing fields.Graphical AbstractA green and facial hydrothermal strategy is developed to synthesis N-doped carbon dots with a high green fluorescence and also a promising fluorescent probe for the detection of acetone and hydrogen peroxide.
Source: Chinese Chemical Letters - Category: Chemistry Source Type: research