Direct detection of Actinobacillus pleuropneumoniae in swine lungs and tonsils by real-time recombinase polymerase amplification assay

In this study, a real-time recombinase polymerase amplification assay (real-time RPA) based on the apxIVA gene was developed to rapid detect A. pleuropneumoniae. Real-time RPA was performed successfully in Genie III at the constant temperature of 39 °C for 20 min. The developed assay was highly specific for A. pleuropneumoniae, and the sensitivity at 95% probability was 536 fg of A. pleuropneumoniae genomic DNA. The real-time RPA for A. pleuropneumoniae was further evaluated on the 112 clinical swine lung and tonsil samples, and 25 (22.3%), 27 (24.1%), and 12 (10.7%) samples were positive for A. pleuropneumoniae by the real-time RPA, real-time PCR and bacterial isolation, respectively. With a real-time PCR as the reference method, the real-time RPA showed a diagnostic specificity of 98.8%, a diagnostic sensitivity of 88.9%, a positive predicative value of 96.0%, a negative predictive value of 96.5%, and a kappa value of 0.900. The above data demonstrated the well potentiality and usefulness of the developed real-time RPA assay in the reliable detection of A. pleuropneumoniae, especially in resource limited settings.
Source: Molecular and Cellular Probes - Category: Molecular Biology Source Type: research