Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer.

In this study, the mass spectrometry-based label-free quantification followed by functional annotation was performed to investigate the most significant deregulated proteins among tissues of primary breast tumor (PT) and axillary metastatic lymph node (LN) and corresponding non-tumor tissues contralateral (NCT) and adjacent (ANT) from patients diagnosed with invasive ductal carcinoma. A total of 462 proteins was observed as differentially expressed (DEPs) among the groups analyzed. A high level of similarity was observed in the proteome profile of both non-tumor breast tissues and DEPs (n = 12) were mainly predicted in the RNA metabolism. The DEPs among the malignant and non-tumor breast tissues [n = 396 (PTxNCT) and n = 410 (LNxNCT)] were related to pathways of the LXR/RXR, NO, eNOS, eIF2 and sirtuins, tumor-related functions, fatty acid metabolism and oxidative stress. Remarkable similarity was observed between both malignant tissues, which the DEPs were related to metastatic capabilities. Altogether, our findings revealed differential proteomic profiles that affected cancer associated and interconnected signaling processes. Validation studies are recommended to demonstrate the potential of individual proteins and/or pathways as biological markers in breast cancer. SIGNIFICANCE: The proteomic analysis of this study revealed high similarity in the proteomic profile of the contralateral and adjacent non-tumor breast tissues. Significant differences were identified...
Source: Genomics Proteomics ... - Category: Genetics & Stem Cells Authors: Tags: J Proteomics Source Type: research