Exploring the composition of macromolecular organic matter in Arctic Ocean sediments under a changing sea ice gradient

In this study pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) has been used to quantify the solvent-insoluble component of marine organic matter in surface sediments to gain a more holistic understanding of the macromolecular composition at five stations along a south to north transect in the Arctic Barents Sea, east of Svalbard (depths 288 – 334 m.b.s.l). Two methods were compared to identify the effectiveness of rapid screening, in contrast to grouping similar pyrolysis products. There were changes in macromolecular composition of marine surface sediments across the S-N transect using both methods, highlighting the varying benthic and pelagic communities north of the Polar Front and across the variable sea ice margin, corresponding to differing biological communities (e.g. fish, phytoplankton, ice algae, zooplankton). All five stations across the changing sea ice transect were interpreted as having primarily marine surface sediment macromolecular signatures, given their locations far from major terrestrial inputs and the more subtle changes when compared with previous investigations on the East Siberian Artic shelf. Fluctuations in macromolecular compositions across the transect included increasing N-containing compounds (including pyridines) and n-alkene/n-alkane doublet pyrolysis products from sediments collected in stations with the greatest average ice cover. If the future position of the Polar Front moves northwards then deposition of labile organic matte...
Source: Journal of Analytical and Applied Pyrolysis - Category: Chemistry Source Type: research
More News: Chemistry | Fish | Nutrition | Organic | Study