Effects of Breath-Hold Deep Diving on the Pulmonary System

This short review focuses on pulmonary injury in breath-hold (BH) divers. When practicing their extreme leisure sport, they are exposed to increased pressure on pulmonary gas volumes, hypoxia, and increased partial gas pressures. Increasing ambient pressures do present a serious problem to BH deep divers, because the semi-rigid thorax prevents the deformation required by the Boyle-Mariotte law. As a result, a negative-pressure barotrauma (lung squeeze) with acute hemoptysis is not uncommon. Respiratory maneuvers such as glossopharyngeal insufflation (GI) and glossopharyngeal exsufflation (GE) are practiced to prevent lung squeeze and to permit equalizing the paranasal sinuses and the middle ear. GI not only impairs venous return, thereby provoking hypotension and even fainting, but also produces intrathoracic pressures likely to induce pulmonary barotrauma that is speculated to induce long-term injury. GE, in turn, further increases the already negative intrapulmonary pressure, thereby favoring alveolar collapse (atelectasis). Finally, hypoxia seemingly not only induces brain injury but initiates the opening of intrapulmonary shunts. These pathways are large enough to permit transpulmonary passage of venous N2 bubbles, making stroke-like phenomena in deep BH divers possible.Respiration
Source: Respiration - Category: Respiratory Medicine Source Type: research