P152R Mutation Within MeCP2 Can Cause Loss of DNA-Binding Selectivity

AbstractMeCP2 is a protein highly expressed in the brain that participates in the genetic expression and RNA splicing regulation. MeCP2 binds preferably to methylated DNA and other nuclear corepressors to alter chromatin. MECP2 gene mutations can cause rett syndrome (RTT), a severe neurological disorder that affects around one in ten thousand girls. In this paper, Molecular Dynamics (MD) simulations were performed to scrutinize how the MeCP2 P152R mutation influences the protein binding to DNA. Also, the Umbrella Sampling technique was used to obtain the potential mean forces (PMFs) of both wild-type and mutated MeCP2 Methyl-CpG-binding domain (MBD) binding to both non-methylated and methylated DNA. P152R is a common missense mutation in MBD associated with RTT; however, there are no studies that explain how it causes protein dysfunction. The results from this study hypothesize that P152R mutation leads to MBD binding more strongly to DNA, while selectively decreasing binding affinity to methylated DNA. These provide an explanation for previous not conclusive experimental results regarding the mechanism of how this mutation affects the binding of the protein to DNA, and subsequently its effects on RTT. Furthermore, the results of this research-in-progress can be used as the basis for further investigations into the molecular basis of RTT and to potentially reveal a target for therapy in the future.
Source: Interdisciplinary Sciences, Computational Life Sciences - Category: Bioinformatics Source Type: research