Defined cell adhesion for silicon-based implant materials by using vapor-deposited functional coatings

Publication date: 1 March 2019Source: Colloids and Surfaces B: Biointerfaces, Volume 175Author(s): Chih-Yu Wu, Zhen-Yu Guan, Pin-Chen Lin, Shih-Ting Chen, Po-Kang Lin, Po-Chun Chen, Pen-Hsiu Grace Chao, Hsien-Yeh ChenAbstractThe field of implantable electronics relies on using silicon materials due to the merits of a well-established fabrication process and favorable properties; of particular interest is the surface modification of such materials. In the present study, we introduce a surface modification technique based on coatings of functionalized Parylene on silicon substrates, where the modified layers provide a defined cell adhesion capability for the resultant silicon materials/devices. Functionalization of Parylene was achieved during a one-step chemical vapor deposition (CVD) polymerization process, forming NHS ester-functionalized Parylene, and subsequent RGD attachment was enabled via a conjugation reaction between the NHS ester and amine groups. The modification procedures additionally provided a clean and gentle approach to avoid thermal excursions, intense irradiation, chemicals, or solvents that might damage delicate structures or sensitive molecules on the devices. The modification layers exhibited excellent mechanical strength on the substrate, meeting the high standards of the American Society for Testing and Materials (ASTM), and the resultant cell adherence property was verified by a centrifugation assay and the analysis of attached cell morphologies; the r...
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research