The Immobilization of Candida rugosa Lipase on the Modified Polyethersulfone with MOF Nanoparticles as an Excellent Performance Bioreactor Membrane

In this study, the modified nanocomposite membrane of polyethersulfone (PES) with NH2-MIL-101(Cr) as a metal-organic framework (MOF) is exploited for Candida rugosa lipase (CRL) immobilization. To that end, the various amounts of NH2-MIL-101(Cr) nanoparticles are blended into PES casting solution to fabricate ultrafiltration membrane via phase inversion technique. The incorporation efficiency of NH2-MIL-101(Cr) nanoparticles on the membrane morphology is investigated using various techniques, namely atomic force microscopy (AFM), X-ray diffraction (XRD), and contact angle goniometry. In terms of water pure flux and CRL immobilization efficiency, the best performance is observed for PES-NH2-MIL1% membrane. This bioactive membrane (CRL@GA@PES-NH2-MIL1%) displays an improvement in pH and thermal stability and separation performance that makes it a fruitful candidate for using in bioreactors. The examination of the wet- and dry-storage stability of CRL@GA@PES-NH2-MIL1% demonstrates the high stability for the wet bioactive membrane. The reusability inspection of CRL@GA@PES-NH2-MIL1% represents about 50% conservation of the residual activity after 12 sequential usage cycles.
Source: Journal of Biotechnology - Category: Biotechnology Source Type: research