Evolution of Endolymph Secretion and Endolymphatic Potential Generation in the Vertebrate Inner Ear

The ear of extant vertebrates reflects multiple independent evolutionary trajectories. Examples include the middle ear or the unique specializations of the mammalian cochlea. Another striking difference between vertebrate inner ears concerns the differences in the magnitude of the endolymphatic potential. This differs both between the vestibular and auditory part of the inner ear as well as between the auditory periphery in different vertebrates. Here we provide a comparison of the cellular and molecular mechanisms in different endorgans across vertebrates. We begin with the lateral line and vestibular systems, as they likely represent plesiomorphic conditions, then review the situation in different vertebrate auditory endorgans. All three systems harbor hair cells bathed in a high (K+) environment. Superficial lateral line neuromasts are bathed in an electrogenically maintained high (K+) microenvironment provided by the complex gelatinous cupula. This is associated with a positive endocupular potential. Whether this is a special or a universal feature of lateral line and possibly vestibular cupulae remains to be discovered. The vestibular system represents a closed system with an endolymph that is characterized by an enhanced (K+) relative to the perilymph. Yet only in land vertebrates does (K+) exceed (Na+). The endolymphatic potential ranges from +1 to +11 mV, albeit we note intriguing reports of substantially higher potentials of up to +70 mV in the cupula of ampullae of ...
Source: Brain, Behavior and Evolution - Category: Neurology Source Type: research