A perspective on a rapid and radiation-free tracer imaging modality, Magnetic Particle Imaging, with promise for clinical translation.

A perspective on a rapid and radiation-free tracer imaging modality, Magnetic Particle Imaging, with promise for clinical translation. Br J Radiol. 2018 Jun 11;:20180326 Authors: Chandrasekharan P, Tay ZW, Zhou XY, Yu E, Orendorff R, Hensley D, Huynh Q, Fung KLB, VanHook CC, Goodwill P, Zheng B, Conolly S Abstract Magnetic Particle Imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and NĂ©el relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-of-concept preclinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nano theranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of SPIO labeled cells. In this review article, a...
Source: The British Journal of Radiology - Category: Radiology Authors: Tags: Br J Radiol Source Type: research