Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the "compound vesicles" for controlled drug delivery.

Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the "compound vesicles" for controlled drug delivery. Mater Sci Eng C Mater Biol Appl. 2018 Aug 01;89:237-244 Authors: Zhou J, Xu H, Tong Z, Yang Y, Jiang G Abstract Herein, dual stimuli-responsive compound vesicles were constructed based on host-guest interaction between a water-soluble pillar[6]arene (WP6) and an amphiphilic azobenzene-containing block copolymers (BCP). Reversible morphological transformation between compound vesicles and solid aggregates was achieved by repeated pH- and photo-stimuli. These compound vesicles were then applied in the controlled release of water-soluble anticancer drug, doxorubicin hydrochloride (DOX · HCl). Upon external stimuli, the DOX · HCl displayed a faster release rate than that without stimuli. Moreover, the compound vesicles showed an excellent cytocompatibility toward the human breast cancer cells (Michigan Cancer Foundation-7, MCF-7), and the drug-loaded compound vesicles exhibited lower cytotoxicity than free drug. The drug-loaded compound vesicles could be taken up by MCF-7 cells and can release the DOX · HCl in cancer cells due to the acid environment, which was important for applications in the therapy of cancers as a controlled-release drug carrier. PMID: 29752094 [PubMed - in process]
Source: Appl Human Sci - Category: Physiology Authors: Tags: Mater Sci Eng C Mater Biol Appl Source Type: research