Antipsychotic-Like Efficacy of Dopamine D 2 Receptor-Biased Ligands is Dependent on Adenosine A 2A Receptor Expression

AbstractDopamine D2 receptor (D2R) activation triggers both G protein- and β-arrestin-dependent signaling. Biased D2R ligands activating β-arrestin pathway have been proposed as potential antipsychotics. The ability of D2R to heteromerize with adenosine A2A receptor (A2AR) has been associated to D2R agonist-induced β-arrestin recruitment. Accordingly, here we aimed to demonstrate the A2AR dependence of D2R/ β-arrestin signaling. By combining bioluminescence resonance energy transfer (BRET) between β-arrestin-2 tagged with yellow fluorescent protein and bimolecular luminescence complementation (BiLC) of D2R/A2AR homomers and heteromers, we demonstrated that the D2R agonists quinpirole and UNC9994 could promote β-arrestin-2 recruitment only when A2AR/D2R heteromers were expressed. Subsequently, the role of A2AR in the antipsychotic-like activity of UNC9994 was assessed in wild-type and A2AR−/− mice administered with phencyclidine (PCP) or amphetamine (AMPH). Interestingly, while UNC9994 reduced hyperlocomotion in wild-type animals treated either with PCP or AMPH, in A2AR−/− mice, it failed to reduce PCP-induced hyperlocomotion or produced only a moderate reduction of AMPH-mediated hyperlocomotion. Overall, the results presented here reinforce the notion that D2R/A2AR heteromerization facilitates D2R β-arrestin recruitment, and furthermore, reveal a pivotal role for A2AR in the antipsychotic-like activity of the β-arrestin-biased D2R ligand, UNC9994.
Source: Molecular Neurobiology - Category: Neurology Source Type: research
More News: Amphetamine | Brain | Neurology