Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer.

In this study, we explored new drug resistance mechanisms of PEM-treated NSCLC using two combinations of parental and PEM-resistant NSCLC cell lines from PC-9 and A549. PEM increased the apoptosis cells in parental PC-9 and the senescent cells in parental A549. However, such changes were not observed in the respective PEM-resistant cell lines. Quantitative RT-PCR analysis revealed that, besides an increased gene expression of thymidylate synthase in PEM-resistant PC-9 cells, the solute carrier family 19 member1 (SLC19A1) gene expression was markedly decreased in PEM-resistant A549 cells. The siRNA-mediated knockdown of SLC19A1 endowed the parental cell lines with PEM resistance. Conversely, PEM-resistant PC-9 cells carrying an epidermal growth factor receptor (EGFR) mutation acquired resistance to a tyrosine kinase inhibitor erlotinib. Although erlotinib can inhibit the phosphorylation of EGFR and Erk, it is unable to suppress the phosphorylation of Akt in PEM-resistant PC-9 cells. Additionally, PEM-resistant PC-9 cells were less sensitive to the PI3K inhibitor LY294002 than parental PC-9 cells. These results indicate that SLC19A1 negatively regulates PEM resistance in NSCLC, and that EGFR-tyrosine-kinase-inhibitor resistance was acquired with PEM resistance through Akt activation in NSCLC harboring EGFR mutations. PMID: 29682186 [PubMed]
Source: Oncotarget - Category: Cancer & Oncology Tags: Oncotarget Source Type: research