Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis.

Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. Front Horm Res. 2018;50:1-13 Authors: Goltzman D, Mannstadt M, Marcocci C Abstract Classic endocrine feedback loops ensure the regulation of blood calcium. Calcium in the extracellular fluid (ECF) binds and activates the calcium sensing receptor (CaSR) on the parathyroid cells, leading to an increase in intracellular calcium. This in turn leads to a reduced parathyroid hormone (PTH) release. Hypocalcemia leads to the opposite sequence of events, namely, lowered intracellular calcium and increased PTH production and secretion. PTH rapidly increases renal calcium reabsorption and, over hours to days, enhances osteoclastic bone resorption and liberates both calcium and phosphate from the skeleton. PTH also increases fibroblast growth factor 23 (FGF23) release from mature osteoblasts and osteocytes. PTH stimulates the renal conversion of 25-hydroxyvitamin D (25[OH]D) to 1,25(OH)2D, likely over several hours, which in turn will augment intestinal calcium absorption. Prolonged hypocalcemia and exposure to elevated PTH may also result in 1,25(OH)2D-mediated calcium and phosphorus release from bone. These effects restore the ECF calcium to normal and inhibit further production of PTH and 1,25(OH)2D. Additionally, FGF23 can be released from bone by 1,25(OH)2D and can in turn reduce 1,25(OH)2D concentrations. FGF23 has also been reported to decrease PTH production. When ECF calcium ...
Source: Frontiers of Hormone Research - Category: Endocrinology Tags: Front Horm Res Source Type: research