An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology

This paper integrates an unobtrusive and affordable sensing technology with machine learning methods to discriminate between healthy and pathological gait patterns as a result of stroke or acquired brain injury. A feature analysis is used to identify the role of each body part in separating pathological patterns from healthy patterns. Gait features, including the orientations of the hips and spine (trunk), shoulders and neck (upper limb), knees and ankles (lower limb), are calculated during walking based on Kinect skeletal tracking sequences. Sequences of these features during three types of walking conditions were examined: 1) walking at self-pace (WSP); 2) walking at distracted (WD); and 3) walking at fast pace (WFP). Two machine learning approaches, an instance-based discriminative classifier ( $k$ -nearest neighbor) and a dynamical generative classifier (using Gaussian Process Latent Variable Model), are examined to distinguish between healthy and pathological gaits. Nested cross validation is implemented to evaluate the performance of the two classifiers using three metrics: F1-score, macro-averaged error, and micro-averaged error. The discriminative model outperforms the generative model in terms of the F1-score (discriminative: WSP > 0.95, WD > 0.96, and WFP > 0.95 and generative: WSP > 0.87, WD > 0.85, and WFP > 0.68) and macro-averaged error (discriminative: WSP < 0.08, WD < 0.1, and WFP < 0.09 and genera...
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research