Controlled drug release from lung-targeted nanocarriers via chemically mediated shell permeabilisation

Publication date: 25 September 2016 Source:International Journal of Pharmaceutics, Volume 511, Issue 2 Author(s): Hanpeng Chen, Arcadia Woods, Ben Forbes, Stuart Jones Nanocarriers can aid therapeutic agent administration to the lung, but controlling drug delivery from these systems after deposition in the airways can be problematic. The aim of this study was to evaluate if chemically mediated shell permeabilisation could help manipulate the rate and extent of nanocarrier drug release. Rifampicin was loaded into lipid shell (loading efficiency 41.0±11.4%, size 50nm) and polymer shell nanocarriers (loading efficiency 25.9±2.3%, size 250nm). The drug release at pH 7.4 (lung epithelial pH) and 4.2 (macrophage endosomal pH) with and without the chemical permeabilisers (Pluronic L62D − lipid nanocarriers; H+- polymer nanocarriers) was then tested. At pH 7.4 the presence of the permeabilisers increased nanocarrier drug release rate (from 3.2μg/h to 6.8μg/h for lipid shell nanocarriers, 2.3μg/h to 3.4μg/h for polymer shell nanocarriers) and drug release extent (from 50% to 80% for lipid shell nanocarriers, from 45% to 76% for polymer shell nanocarriers). These effects were accompanied by lipid nanocarrier distension (from 50 to 240nm) and polymer shell hydrolysis. At pH 4.2 the polymer nanocarriers did not respond to the permeabiliser, but the lipid nanocarrier maintained a robust drug release enhancement response and hence they demonstrated that the manipulation of co...
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research