The Model [NiFe]-Hydrogenases of Escherichia coli.

The Model [NiFe]-Hydrogenases of Escherichia coli. Adv Microb Physiol. 2016;68:433-507 Authors: Sargent F Abstract In Escherichia coli, hydrogen metabolism plays a prominent role in anaerobic physiology. The genome contains the capability to produce and assemble up to four [NiFe]-hydrogenases, each of which are known, or predicted, to contribute to different aspects of cellular metabolism. In recent years, there have been major advances in the understanding of the structure, function, and roles of the E. coli [NiFe]-hydrogenases. The membrane-bound, periplasmically oriented, respiratory Hyd-1 isoenzyme has become one of the most important paradigm systems for understanding an important class of oxygen-tolerant enzymes, as well as providing key information on the mechanism of hydrogen activation per se. The membrane-bound, periplasmically oriented, Hyd-2 isoenzyme has emerged as an unusual, bidirectional redox valve able to link hydrogen oxidation to quinone reduction during anaerobic respiration, or to allow disposal of excess reducing equivalents as hydrogen gas. The membrane-bound, cytoplasmically oriented, Hyd-3 isoenzyme is part of the formate hydrogenlyase complex, which acts to detoxify excess formic acid under anaerobic fermentative conditions and is geared towards hydrogen production under those conditions. Sequence identity between some Hyd-3 subunits and those of the respiratory NADH dehydrogenases has led to hypotheses tha...
Source: Advances in Microbial Physiology - Category: Microbiology Authors: Tags: Adv Microb Physiol Source Type: research