Cadherin-11 coordinates cellular migration and extracellular matrix remodeling during aortic valve maturation.

In this study, we show that deficiency of the cell-cell adhesion protein cadherin-11 (cad-11) results in significant embryonic and perinatal lethality primarily due to valve related cardiac dysfunction. While endocardial to mesenchymal transformation is not abrogated, mesenchymal cells do not homogeneously cellularize the cushions. These cushions remain thickened with disorganized ECM, resulting in pronounced aortic valve insufficiency. Mice that survive to adulthood maintain thickened and stenotic semilunar valves, but interestingly do not develop calcification. Cad-11 -/- aortic valve leaflets contained reduced sox9 activity, β1 integrin expression, and RhoA-GTP activity, suggesting that remodeling defects are due to improper migration and/or cellular contraction. Cad-11 deletion or siRNA knockdown reduced migration, eliminated collective migration, and impaired 3D matrix compaction by aortic valve interstitial cells (VIC). Cad-11 depleted cells in culture contained few filopodia, stress fibers, or contact inhibited locomotion. Transfection of Cad-11 depleted cells with constitutively active RhoA restored cell phenotypes. Together, these results identify cadherin-11 mediated adhesive signaling for proper remodeling of the embryonic semilunar valves. PMID: 26188246 [PubMed - as supplied by publisher]
Source: Developmental Biology - Category: Biology Authors: Tags: Dev Biol Source Type: research