Trajectory planning framework for autonomous vehicles based on collision injury prediction for vulnerable road users

Accid Anal Prev. 2024 May 14;203:107610. doi: 10.1016/j.aap.2024.107610. Online ahead of print.ABSTRACTDue to the escalating occurrence and high casualty rates of accidents involving Electric Two-Wheelers (E2Ws), it has become a major safety concern on the roads. Additionally, with the widespread adoption of current autonomous driving technology, a greater challenge has arisen for the safety of vulnerable road participants. Most existing trajectory planning methods primarily focus on the safety, comfort, and dynamics of autonomous vehicles themselves, often overlooking the protection of vulnerable road users (VRUs), typically E2W riders. This paper aims to investigate the kinematic response of E2Ws in vehicle collisions, including the 15 ms Head Injury Criterion (HIC15). It analyzes the impact of key collision parameters on head injuries, establishes injury prediction models for anticipated scenarios, and proposes a trajectory planning framework for autonomous vehicles based on predicting head injuries of VRUs. Firstly, a multi-rigid-body model of two-wheeler-vehicle collision was established based on a real accident database, incorporating four critical collision parameters (initial collision velocity, initial collision position, and collision angle). The accuracy of the multi-rigid-body model was validated through verifications with real fatal accidents to parameterize the collision scenario. Secondly, a large-scale effective crash dataset has been established by the multi-...
Source: Accident; Analysis and Prevention. - Category: Accident Prevention Authors: Source Type: research