Visual feedbacks influence short-term learning of torque versus motion profile with robotic guidance among young adults

Hum Mov Sci. 2024 May 1;95:103221. doi: 10.1016/j.humov.2024.103221. Online ahead of print.ABSTRACTRobotic assistance can improve the learning of complex motor skills. However, the assistance designed and used up to now mainly guides motor commands for trajectory learning, not dynamics learning. The present study explored how a complex motor skill involving the right arm can be learned without suppressing task dynamics, by means of an innovative device with robotic guidance that allows a torque versus motion profile to be learned with admittance control. In addition, we assessed how concurrent visual feedback on this profile can enhance learning without creating dependency, by means of a fading procedure (i.e., feedback reduction across trials). On Day 1, a Control group performed an acquisition session (6 blocks) featuring concurrent visual feedback, while a Fading group performed the session with a gradual reduction in feedback (from 100% to 0% over the 6 blocks). On Day 2, both groups performed a block first without feedback (i.e., Transfer test), then with feedback (i.e., Retention test). Results revealed that on Day 1, movement rehearsal induced a significant improvement in spatiotemporal parameters for the Control group, compared with the Fading group. On Day 2, the opposite was found when this visual feedback was removed, as the Fading group performed significantly better than the Control group on the Transfer test. Vision allows a relationship to be established betwee...
Source: Human Movement Science - Category: Neurology Authors: Source Type: research