Dual-mode fluorescence and colorimetric smartphone-based sensing platform with oxidation-induced self-assembled nanoflowers for sarcosine detection

Anal Chim Acta. 2024 Jun 1;1306:342586. doi: 10.1016/j.aca.2024.342586. Epub 2024 Apr 8.ABSTRACTBACKGROUND: Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing.RESULTS: To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 μM to 60 μM, with a detection limit of 0.226 μM, ...
Source: Analytica Chimica Acta - Category: Chemistry Authors: Source Type: research