Mixed-size spot scanning with a compact large momentum acceptance superconducting (LMA-SC) gantry beamline for proton therapy

Phys Med Biol. 2024 Apr 30. doi: 10.1088/1361-6560/ad45a6. Online ahead of print.ABSTRACTLowering treatment costs and improving treatment quality are two primary goals for next-generation proton therapy (PT) facilities. This work will design a compact large momentum acceptance superconducting (LMA-SC) gantry beamline to reduce the footprint and expense of the PT facilities, with a novel mixed-size spot scanning method to improve the sparing of organs at risk (OAR).
Approach: For the LMA-SC gantry beamline, the movable energy slit is placed in the middle of the last achromatic bending section, and the beam momentum spread of delivered spots can be easily changed during the treatment. Simultaneously, changing the collimator size can provide spots with various lateral spot sizes. Based on the provided large-size and small-size spot models, the treatment planning with mixed spot scanning is optimized: the interior of the target is irradiated with large-size spots (to cover the uniform-dose interior efficiently), while the peripheral of the target is irradiated with small-size spots (to shape the sharp dose falloff at the peripheral accurately).
Main results: The treatment plan with mixed-size spot scanning was evaluated and compared with small and large-size spot scanning for thirteen clinical prostate cases. The mixed-size spot plan had superior target dose homogeneities, better protection of OAR, and better plan robustness than the large-size spot plan. Compared...
Source: Physics in Medicine and Biology - Category: Physics Authors: Source Type: research