Resting state MRI reveals spontaneous physiological fluctuations in the kidney and tracks diabetic nephropathy in rats

Am J Physiol Renal Physiol. 2024 Apr 25. doi: 10.1152/ajprenal.00423.2023. Online ahead of print.ABSTRACTThe kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in nephron perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting- state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 minutes, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0-0.3 Hz, in frequency bands also associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signal in kidney cortex and medulla. Power from spectra in specific frequency bands from kidney cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally...
Source: Am J Physiol Renal P... - Category: Urology & Nephrology Authors: Source Type: research