The gamma-variate in contrast-enhanced imaging: a unified view and method from computed to electrical impedance tomography

This study aims to develop a common theoretical and practical hemodynamic extraction basis for DCE modelling across modalities, based on the gamma-variate function.

Approach: The study introduces a framework to generate time-intensity curves for multiple DCE imaging modalities from user-defined hemodynamic parameters. Thus, extensive datasets were simulated for both DCE-CT and EIT, representing different hemodynamic scenarios. Additionally, gamma-variate extensions to account for several physiological effects were detailed in a modality-agnostic manner, and three corresponding fitting strategies, namely nonlinear, linear, and a novel hybrid approach, were implemented and compared on the basis of accuracy of parameter estimation, first pass reconstruction, speed of computation, and failure rate.

Main results: As a result, we found the linear method to be the most modality-dependent, exhibiting the greatest bias, variance and failure rates, although remaining the fastest alternative. The hybrid method at least matches the state-of-the-art nonlinear method's accuracy, while improving its robustness and speed by 10 times. 

Significance: Our research suggests that the hybrid method may bring noteworthy accuracy and efficiency improvements in handling the high-dimensionality of DCE imaging in general, being a step towards real-time processing. Moreover, our generative model presents a potential asset to produce benchmarking and dat...
Source: Physics in Medicine and Biology - Category: Physics Authors: Source Type: research
More News: Biology | CT Scan | Physics | Study