Neuron-Like Silicone Nanofilaments@Montmorillonite Nanofillers of PEO-Based Solid-State Electrolytes for Lithium Metal Batteries with Wide Operation Temperature

Angew Chem Int Ed Engl. 2024 Apr 22:e202400091. doi: 10.1002/anie.202400091. Online ahead of print.ABSTRACTPoly(ethylene oxide) (PEO)-based composite solid electrolytes (CSEs) are promising to accelerate commercialization of solid-state lithium metal batteries (SSLMBs). Nonetheless, this is hindered by the CSEs' limited ion conductivity at room temperature. Here, we propose design, synthesis, and application of the bioinspired neuron-like nanofillers for PEO-based CSEs. The neuron-like superhydrophobic nanofillers are synthesized by controllably grafting silicone nanofilaments onto montmorillonite nanosheets. Compared to various reported fillers, the nanofillers can greatly improve ionic conductivity (4.9 × 10-4 S cm-1, 30 °C), Li+ transference number (0.63), oxidation stability (5.3 V) and mechanical properties of the PEO-based CSEs because of the following facts. The distinctive neuron-like structure and the resulting synaptic-like connections establish numerous long-distance continuous channels over various directions in the PEO-based CSEs for fast and uniform Li+ transport. Consequently, the assembled SSLMBs with the CSEs and LiFePO4 or NCM811 cathodes display superior cycling stability over a wide temperature range of 50 °C to 0 °C. Surprisingly, the pouch batteries with the large-scale prepared CSEs kept working after being repeatedly bent, folded, cut or even punched in air. We believe that design of neuron-like nanofillers is a viable approach to produce CSEs with...
Source: Angewandte Chemie - Category: Chemistry Authors: Source Type: research