Aluminium, Nitrogen ‐Dual‐Doped Reduced Graphene Oxide Co‐Existing with Cobalt‐Encapsulated Graphitic Carbon Nanotube as an Activity Modulated Electrocatalyst for Oxygen Electrocatalyst for Oxygen Electrochemistry Applications

This manuscript reports the development of a new bifunctional catalyst that exhibits high activity and stability under practical operating conditions. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with the in situ formed cobalt-encapsulated CNT units is synthesized by a scalable pyrolysis method in an inert Ar atmosphere. The developed electrocatalyst achieved enhanced the oxygen reduction reaction (ORR) and the oxygen evolution reaction OER activity as a result of the favorable synergistic modulations and the system can serve as a process-friendly air-electrode for rechargeable zinc-air battery (RZAB). AbstractThere is a rising need to create high-performing, affordable electrocatalysts in the new field of oxygen electrochemistry. Here, a cost-effective, activity-modulated electrocatalyst with the capacity to trigger both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in an alkaline environment is presented. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with cobalt-encapsulated carbon nanotube units. Based on X-ray Absorption Spectroscopy (XAS) studies, it is established that the superior reaction kinetics in Al, Co/N-rGCNT over their bulk counterparts can be attributed to their electronic regulation. The Al, Co/N-rGCNT performs as a versatile bifunctional electrocatalyst for zinc-air battery (ZAB), deliver...
Source: Small - Category: Nanotechnology Authors: Tags: Research Article Source Type: research