Performance of NiO doped on alkaline sludge from waste photovoltaic industries for catalytic dry reforming of methane

Environ Sci Pollut Res Int. 2024 Apr 18. doi: 10.1007/s11356-024-33325-7. Online ahead of print.ABSTRACTAlkali sludge (AS) is waste abundantly generated from solar photovoltaic (PV) solar cell industries. Since this potential basic material is still underutilized, a combination with NiO catalyst might greatly influence coke resentence, especially in high-temperature thermochemical reactions (Arora and Prasad, RSC Adv. 6:108,668-108688, 2016). This paper investigated alkaline sludge containing 3CaO-2SiO2 doped with well-known NiO to enhance the dry reforming of methane (DRM) reaction. The wet-impregnation method was used to prepare the xNiO/AS (x = 5-15%) catalysts. Subsequently, all catalysts were tested by using X-ray diffraction (XRD), nitrogen adsorption/desorption (BET), temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of carbon dioxide (TPD-CO2), field emission scanning electron microscopy (FESEM-EDX), and X-ray photoelectron spectroscopy (XPS). The spent catalysts were analyzed by thermogravimetric analysis (TGA/DTG), transmission electron microscopy (TEM), and temperature-programmed oxidation (TPO). The catalytic performance of xNiO/AS catalysts was investigated in a fixed bed reactor connected with gas chromatography thermal conductivity detector (GC-TCD) at a CH4:CO2 flow rate of 30 mL-1 during a 10-h reaction by following (Shamsuddin et al., Int. J. Energy Res. 45:15,463-15,480, 2021d). For optimization parameters, the effects...
Source: Cell Research - Category: Cytology Authors: Source Type: research
More News: Chemistry | Cytology | PET Scan