Combined dasatinib and quercetin treatment contributes to skin rejuvenation through selective elimination of senescent cells in vitro and in vivo

Biogerontology. 2024 Apr 15. doi: 10.1007/s10522-024-10103-z. Online ahead of print.ABSTRACTThe skin's protective functions are compromised over time by both endogenous and exogenous aging. Senescence is well-documented in skin phenotypes, such as wrinkling and sagging, a consequence of the senescence-associated secretory phenotype (SASP) that involves the accumulation of senescent fibroblasts, chronic inflammation, and collagen remodeling. Although therapeutic approaches for eliminating senescent cells from the skin are available, their efficacy remains unclear. Accordingly, we aimed to examine the effects of dasatinib in combination with quercetin (D + Q) on senescent human skin fibroblasts and aging human skin. Senescence was induced in human dermal fibroblasts (HDFs) using approaches such as long-term passaging, ionizing radiation, and doxorubicin treatment. The generated senescent cells were treated with D + Q or vehicle. Additionally, a mouse-human chimera model was generated by subcutaneously transplanting whole-skin grafts of aged individuals onto nude mice. Mouse models were administered D + Q or vehicle by oral gavage for 30 days. Subsequently, skin samples were harvested and stained for senescence-associated beta-galactosidase. Senescence-associated markers were assessed by western blotting, reverse transcription-quantitative PCR and histological analyses. Herein, D + Q selectively eliminated senescent HDFs in all cellular models of induced senescence. Additionally...
Source: Biogerontology - Category: Geriatrics Authors: Source Type: research