Impaired reprogramming of the autophagy flux in maturing dendritic cells from crohn disease patients with core autophagy gene-related polymorphisms

Autophagy. 2024 Apr 14. doi: 10.1080/15548627.2024.2338574. Online ahead of print.ABSTRACTCrohn disease (CD) is an inflammatory bowel disease whose pathogenesis involves inappropriate immune responses toward gut microbiota on genetically predisposed backgrounds. Notably, CD is associated with single-nucleotide polymorphisms affecting several genes involved in macroautophagy/autophagy, the catabolic process that ensures the degradation and recycling of cytosolic components and microorganisms. In a clinical translation perspective, monitoring the autophagic activity of CD patients will require some knowledge on the intrinsic functional status of autophagy. Here, we focused on monocyte-derived dendritic cells (DCs) to characterize the intrinsic quantitative features of the autophagy flux. Starting with DCs from healthy donors, we documented a reprogramming of the steady state flux during the transition from the immature to mature status: both the autophagosome pool size and the flux were diminished at the mature stage while the autophagosome turnover remained stable. At the cohort level, DCs from CD patients were comparable to control in term of autophagy flux reprogramming capacity. However, the homozygous presence of ATG16L1 rs2241880 A>G (T300A) and ULK1 rs12303764 (G/T) polymorphisms abolished the capacity of CD patient DCs to reprogram their autophagy flux during maturation. This effect was not seen in the case of CD patients heterozygous for these polymorphisms, reveali...
Source: Autophagy - Category: Cytology Authors: Source Type: research