How to effectively achieve air pollutant reduction and carbon mitigation in China's industrial sector? A study based on decomposition analysis and scenario simulation

In this study, we first employ the generalized Divisia index method to analyze the driving factors of industrial CO2 and SO2 emissions, incorporating fixed asset investment and R&D input. The key sub-sectors that exert significant impact on emissions of the whole industrial sector are identified. And then, scenario analysis and Monte Carlo simulation are utilized to predict future trends and potential for reducing CO2 and SO2 emissions. Furthermore, the carbon peaking time of the industrial sub-sectors is investigated. The results indicate that fixed asset investment and R&D input both have played positive roles in CO2 and SO2 emissions. Emission reduction is mainly driven by investment emission intensity, output emission intensity, and R&D emission intensity. Sub-sectors S09, S10, S11, S12, and S18 present substantial potential for reducing air pollutant and carbon emissions. Although SO2 emissions from the industrial sector are projected to decrease in the future, the peak of CO2 emissions have not been reached. The carbon peak time for the whole industrial sector is predicted in 2025, with the peak of 7892.33 Mt. The five key sub-sectors are anticipated to reach the respective carbon emission peaks at different times. Therefore, to effectively implement industrial air pollutant and carbon reduction, the role of fixed asset investment and R&D input should be fully utilized, and high-energy consumption and high-emission sub-sectors should be prioritized for a...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research