A variable speed limit control approach for freeway tunnels based on the model-based reinforcement learning framework with safety perception

Accid Anal Prev. 2024 Apr 12;201:107570. doi: 10.1016/j.aap.2024.107570. Online ahead of print.ABSTRACTTo improve the traffic safety and efficiency of freeway tunnels, this study proposes a novel variable speed limit (VSL) control strategy based on the model-based reinforcement learning framework (MBRL) with safety perception. The MBRL framework is designed by developing a multi-lane cell transmission model for freeway tunnels as an environment model, which is built so that agents can interact with the environment model while interacting with the real environment to improve the sampling efficiency of reinforcement learning. Based on a real-time crash risk prediction model for freeway tunnels that uses random deep and cross networks, the safety perception function inside the MBRL framework is developed. The reinforcement learning components fully account for most current tunnels' application conditions, and the VSL control agent is trained using a deep dyna-Q method. The control process uses a safety trigger mechanism to reduce the likelihood of crashes caused by frequent changes in speed. The efficacy of the proposed VSL strategies is validated through simulation experiments. The results show that the proposed VSL strategies significantly increase traffic safety performance by between 16.00% and 20.00% and traffic efficiency by between 3.00% and 6.50% compared to a fixed speed limit approach. Notably, the proposed strategies outperform traditional VSL strategy based on the tr...
Source: Accident; Analysis and Prevention. - Category: Accident Prevention Authors: Source Type: research