Characteristics and ozone formation potentials of volatile organic compounds in a heavy industrial urban agglomeration of Northeast China

This study presents a systematic VOCs analysis in a less studied heavy industrial urban agglomeration located in Northeast China. Using a cruising platform, we conducted real-time monitoring of VOC concentrations and components at Changchun (CC), Jilin (JL), Siping (SP), and Liaoyuan (LY) in Jilin Province. During the observation period, the average VOC concentrations at CC, JL, SP, and LY were 63.38  ± 127.03, 260.39 ± 855.76, 18.06 ± 17.17, and 10.12 ± 17.48 µg/m3, respectively. Halocarbons were predominant with a high percentage of contribution (22.4 –31.1%) to the total observed VOCs for all cities. Combined with 2020-based anthropogenic VOCs emission inventory of Jilin Province, we concluded that industrial processes had the largest contribution to VOCs concentration in CC, whereas petrochemical emission was the major source of VOCs in JL. T he assessment of atmospheric photochemical reactivity indicates the dominant role of aromatics and alkenes in O3 formation potential (OFP). As the second-most abundant species in CC and JL, aromatics contributed over 50% of the OFPs. Alkenes played a dominant role in O3 formation in SP and LY, accounting for nearly half of the total OFPs. Considering the VOC emission characteristics and OFP results, we suggest that reducing aromatics emissions, particularly benzene, toluene, ethylbenzene, and xylene, should be given higher priority to mitigate O3 pollution and prevent health risks. Moreover, industrial-related...
Source: Air Quality, Atmosphere and Health - Category: Environmental Health Source Type: research