Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers

Chem Phys Lipids. 2024 Mar;259:105376. doi: 10.1016/j.chemphyslip.2024.105376. Epub 2024 Feb 6.ABSTRACTMembrane sterols contribute to the function of biomembranes by regulating the physical properties of the lipid bilayers. Cholesterol, a typical mammalian sterol, is biosynthesized by oxidation of lanosterol. From a molecular evolutionary perspective, lanosterol is considered the ancestral molecule of cholesterol. Here, we studied whether cholesterol is superior to lanosterol in regulating the physical properties of the lipid bilayer in terms of the structural effect on model biomembranes composed of a phospholipid. For comparison, oxysterol, which is formed by oxidation of cholesterol, was also studied. The phospholipid used was 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which is abundantly found in mammalian biomembranes, and 7β-hydroxycholesterol, which is highly cytotoxic, was used as the oxysterol. The apparent molecular volume was calculated from the mass density determined by the flotation method using H2O and D2O, and the bilayer thickness was determined by reconstructing the electron density distribution from X-ray diffraction data of the POPC/sterol mixtures at a sterol concentration of 30 mol%. The apparent occupied area at the bilayer surface was calculated from the above two structural data. The cholesterol system had the thickest bilayer thickness and the smallest occupied area of the three sterols studied here. This indicates that the POPC/choles...
Source: Chemistry and Physics of Lipids - Category: Lipidology Authors: Source Type: research