The Pharmacogenetic Variability Associated With the Pharmacokinetics and Pharmacodynamics of Rivaroxaban in Healthy Chinese Subjects: A National Multicenter Exploratory Study

This study aimed to explore the pharmacogenetic variability associated with the pharmacokinetics (PK) and pharmacodynamics (PD) of rivaroxaban in healthy Chinese subjects.METHODS: This was a multicenter study that included 304 healthy adults aged 18 to 45 years with unknown genotypes. All participants were administered a single dose of rivaroxaban at 10 mg, 15 mg, or 20 mg. PK and PD parameters were measured, and exome-wide association analysis was conducted.FINDINGS: Sixteen SNPs located on 11 genes influenced the AUC0-t. Among these, the 3 most influential genes were MiR516A2, PARP14, and MIR618. Thirty-six SNPs from 28 genes were associated with the PD of rivaroxaban. The 3 most influential genes were PKNOX2, BRD3, and APOL4 for anti-Xa activity, and GRIP2, PLCE1, and MLX for diluted prothrombin time (dPT). Among them, BRD3 played an important role in both the PK and PD of rivaroxaban. Anti-Xa activity (ng/mL) differed significantly among subjects with BRD3 rs467387: 145.1 ± 55.5 versus 139.9 ± 65.1 versus 164.0 ± 68.6 for GG, GA, and AA carriers, respectively (P = 0.0002).IMPLICATIONS: This study found that that the regulation of the BRD3 gene might affect the PK and PD of rivaroxaban, suggesting that it should be studied as a new pharmacologic target. The correlation between this gene locus and clinical outcomes has yet to be verified in patients undergoing clinical treatment.PMID:38553322 | DOI:10.1016/j.clinthera.2024.02.009
Source: Clinical Therapeutics - Category: Drugs & Pharmacology Authors: Source Type: research