Tradeoffs in concentration sensing in dynamic environments

Biophys J. 2024 Mar 25:S0006-3495(24)00205-4. doi: 10.1016/j.bpj.2024.03.025. Online ahead of print.ABSTRACTWhen cells measure concentrations of chemical signals, they may average multiple measurements over time in order to reduce noise in their measurements. However, when cells are in a environment that changes over time, past measurements may not reflect current conditions - creating a new source of error that trades off against noise in chemical sensing. What statistics in the cell's environment control this tradeoff? What properties of the environment make it variable enough that this tradeoff is relevant? We model a single eukaryotic cell sensing a chemical secreted from bacteria (e.g. folic acid). In this case, the environment changes because the bacteria swim - leading to changes in the true concentration at the cell. We develop analytical calculations and stochastic simulations of sensing in this environment. We find that cells can have a huge variety of optimal sensing strategies, ranging from not time averaging at all, to averaging over an arbitrarily long time, or having a finite optimal averaging time. The factors that primarily control the ideal averaging are the ratio of sensing noise to environmental variation, and the ratio of timescales of sensing to the timescale of environmental variation. Sensing noise depends on the receptor-ligand kinetics, while the environmental variation depends on the density of bacteria and the degradation and diffusion properties o...
Source: Biophysical Journal - Category: Physics Authors: Source Type: research