Influence of posterior cruciate ligament tension on tibiofemoral and patellofemoral joint contact mechanics in cruciate-retaining total knee replacement: a combined musculoskeletal multibody and finite-element simulation

Comput Methods Biomech Biomed Engin. 2024 Mar 21:1-13. doi: 10.1080/10255842.2024.2329946. Online ahead of print.ABSTRACTThe influence of posterior cruciate ligament (PCL) tension on the clinical outcome of cruciate-retaining total knee replacement (CR-TKR) remains controversial. Various numerical approaches have been used to study this influence systematically, but the models used are limited by certain assumptions and simplifications. Therefore, the objective of this computational study was to develop a combined musculoskeletal multibody and finite-element simulation during a squat motion to 90° knee flexion with a CR-TKR design to overcome previous limitations regarding model inputs. In addition, different PCL tensions (tight, lax, resected) were modeled and the influence on tibiofemoral and resurfaced patellofemoral joint dynamics and contact stresses was evaluated. The effect of the PCL on knee joint dynamics and contact stresses was more pronounced at higher flexion angles. Tibiofemoral joint dynamics were influenced and a tight PCL induced increased posterior femoral translation during flexion. The maximum contact stress in the tibial insert increased from 20.6 MPa to 22.5 MPa for the resected and tightest PCL at 90° knee flexion. Patellofemoral joint dynamics were only slightly affected by PCL tension. However, the maximum contact stress in the patellar component decreased from 58.0 MPa to 53.7 MPa for the resected and tightest PCL at 90° knee flexion. The combinat...
Source: Computer Methods in Biomechanics and Biomedical Engineering - Category: Biomedical Engineering Authors: Source Type: research