Inhibition of PEDV viral entry upon blocking N-glycan elaboration

This study meticulously investigates the impact of O- and N-linked glycans on PEDV proteins and host cell interaction, shedding light on their influence on the virus's invasion process. Utilizing CRISPR-Cas9 technology to inhibit cell surface O- and N-linked glycan synthesis demonstrated no discernible impact on virus infection. However, progeny PEDV strains lacking these glycans exhibited a minor effect of O-linked glycans on virus infection. Conversely, a notable 40% reduction in infectivity was observed when the virus surface lacked N-linked glycans, emphasizing their pivotal role in facilitating virus recognition and binding to host cells. Additionally, inhibition studies utilizing kifunensine, a natural glycosidase I inhibitor, reaffirmed the significant role of N-linked glycans in virus infection. Inhibiting N-linked glycan synthesis with kifunensine substantially decreased virus entry into cells and potentially influenced spike protein expression. Assessment of the stability and recovery potential of N-linked glycan-deficient strains underscored the critical importance of N-glycans at various stages of the virus lifecycle. In vivo experiments infecting piglets with N-glycan-deficient strains exhibited milder clinical symptoms, reduced virus excretion, and less severe pathological lesions compared to conventional strains. These findings offer promising translational applications, proposing N-glycosylation inhibitors as potential therapeutic interventions against PEDV. T...
Source: Virology - Category: Virology Authors: Source Type: research