Controlled construction of 2D hierarchical core-shell ZnO/MnO < sub > 2 < /sub > nanosheets on Nitinol fiber with enhanced adsorption performance for selective solid-phase microextraction of trace polycyclic aromatic hydrocarbons in water samples

Anal Chim Acta. 2024 Apr 15;1298:342402. doi: 10.1016/j.aca.2024.342402. Epub 2024 Feb 22.ABSTRACTBACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are an important class of potentially toxic persistent organic pollutants in environmental water. Their concentrations are usually too low to allow for direct determination with analytical instruments, and the preconcentration is required prior to instrumental analysis. Solid phase microextraction (SPME) is considered as a high-performance green sample preparation technique for volatile and non-volatile organic compounds due to its high enrichment factor. In fact, the nature of SPME coatings governs the adsorption performance. Therefore, more efforts have devoted to the controlled construction of novel long-life SPME fibers with enhanced adsorption performance and improved adsorption selectivity.RESULTS: 2D hierarchical core-shell ZnO/MnO2 nanosheets (NSs) were constructed on a Nitinol (NiTi) fiber substrate by layer-by-layer assembly for enhanced and selective SPME of PAHs. Firstly, hexagonal ZnO NSs were electrodeposited on the NiTi substrate. Subsequently smaller secondary MnO2 NSs were uniformly grown on the surface of ZnO NSs by a facile hydrothermal oxidation process. ZnO NSs were well protected by the chemically stable MnO2 shell, making the coating highly durable and efficient for SPME application. Meanwhile, the ZnO/MnO2 NSs coating demonstrated superior adsorption performance for PAHs. After the optimization of SPME co...
Source: Analytica Chimica Acta - Category: Chemistry Authors: Source Type: research