Investigating the characteristics of biomass wastes via particle feeder in downdraft gasifier

Environ Res. 2024 Mar 8:118597. doi: 10.1016/j.envres.2024.118597. Online ahead of print.ABSTRACTParticle feeding plays a crucial role in the gasifier due to its effects on the efficiency and performance metrics of the thermochemical process. Investigating particle size distribution's impact on downdraft gasification reactor performance, this study delves into the significance of feedstock characteristics (moisture, volatile matter, fixed carbon, and ash contents) during the particle feeding stage. Various biomass wastes (date palm waste, olive pomace and sewage sludge) at diverse compositions and sizes are subjected to empirical determination of mass flow rates (MFR), power ratings, and storage times for each feedstock. The preheating process in the gasifier is considered, employing both an approximation and analytical solution. In addition, the influence of the equivalence ratio (ER) on the syngas yield is analyzed. The collected data reveals that for average particle size of 200 μm, the highest MFR (in g/min) are 0.518 ± 0.033, 7.691 ± 0.415, and 16.111 ± 1.050, for palm wood biomass, olive pomace and sewage sludge, respectively. Smaller particles (80 μm) led to extended storage times. Moreover, the lumped capacitance approximation method consistently underestimates preheating time, with a percentage error of 6.26%-17.08%. Response surface methodology (RSM) optimization analysis provides optimal gasification conditions for palm wood biomass, olive pomace, and sewage s...
Source: Environmental Research - Category: Environmental Health Authors: Source Type: research