Selective Medial Septum Lesions in Healthy Rats Induce Longitudinal Changes in Microstructure of Limbic Regions, Behavioral Alterations, and Increased Susceptibility to Status Epilepticus

AbstractSepto-hippocampal pathway, crucial for physiological functions and involved in epilepsy. Clinical monitoring during epileptogenesis is complicated. We aim to evaluate tissue changes after lesioning the medial septum (MS) of normal rats and assess how the depletion of specific neuronal populations alters the animals ’ behavior and susceptibility to establishing a pilocarpine-inducedstatus epilepticus. Male Sprague –Dawley rats were injected into the MS with vehicle or saporins (to deplete GABAergic or cholinergic neurons;n = 16 per group). Thirty-two animals were used for diffusion tensor imaging (DTI); scanned before surgery and 14 and 49 days post-injection. Fractional anisotropy and apparent diffusion coefficient were evaluated in the fimbria, dorsal hippocampus, ventral hippocampus, dorso-medial thalamus, an d amygdala. Between scans 2 and 3, animals were submitted to diverse behavioral tasks. Stainings were used to analyze tissue alterations. Twenty-four different animals received pilocarpine to evaluate the latency and severity of thestatus epilepticus 2  weeks after surgery. Additionally, eight different animals were only used to evaluate the neuronal damage inflicted on the MS 1 week after the molecular surgery. Progressive changes in DTI parameters in both white and gray matter structures of the four evaluated groups were observed. Behaviorally , the GAT1-saporin injection impacted spatial memory formation, while 192-IgG-saporin triggered anxiety-li...
Source: Molecular Neurobiology - Category: Neurology Source Type: research