Custom orthotic design by integrating 3D scanning and subject-specific FE modelling workflow

This study aimed to develop a subject-specific scaled foot modelling workflow for the foot orthoses design based on the scanned foot surface data. Six participants (twelve feet) were collected for the foot finite element modelling. The subject-specific surface-based finite element model (SFEM) was established by incorporating the scanned foot surface and scaled foot bone geometries. The geometric deviations between the scaled and the scanned foot surfaces were calculated. The SFEM model was adopted to predict barefoot and foot-orthosis interface pressures. The averaged distances between the scaled and scanned foot surfaces were 0.23  ± 0.09 mm. There was no significant difference for the hallux, medial forefoot, middle forefoot, midfoot, medial hindfoot, and lateral hindfoot, except for the lateral forefoot region (p = 0.045). The SFEM model evaluated slightly higher foot-orthoses interface pressure values than measured, with a maximum deviation of 7.1%. These results indicated that the SFEM technique could predict the barefoot and foot-orthoses interface pressure, which has the potential to expedite the pr ocess of orthotic design and optimization.Graphical abstract
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research