Crash risk estimation of Heavy Commercial vehicles on horizontal curves in mountainous terrain using proactive safety method

This study addresses this gap by employing an SSM known as anticipated collision time (ACT) to explore the impact of horizontal curves on the crash risk of HCVs in mountainous terrain. To perform the crash risk analysis, a collection of videos was gathered from horizontal curves in the mountainous terrain along the Guwahati-Shillong bypass in the Northeastern region of India. Subsequently, trajectories were extracted from these videos using semi-automated image processing software. Traffic conflicts were identified using ACT, and the crash risk was estimated through the Peak-Over Threshold (POT) approach of the Extreme Value Theory (EVT). The findings indicate that Run-Off-Road (ROR) traffic events happen more frequently on or near the horizontal curves falling in mountainous terrain. However, the frequency of severe ROR traffic events is lower, indicating the lower propensity for such collisions on the selected curves. The threshold for the safety margin of ROR traffic events involving HCVs was 2 s. The study revealed that stationary models exhibit an overestimation of crash frequency (0, 6) compared to the observed crash frequency (0, 2). Consequently, non-stationary crash risk models were developed, incorporating road geometry and the braking and yaw rates of HCVs as covariates. The results demonstrate that the estimated confidence bounds (1, 2) align with the observed crash frequency (0, 2), emphasizing the applicability of POT models for safety analysis in mountainous te...
Source: Accident; Analysis and Prevention. - Category: Accident Prevention Authors: Source Type: research