LGDNet: local feature coupling global representations network for pulmonary nodules detection

AbstractDetection of suspicious pulmonary nodules from lung CT scans is a crucial task in computer-aided diagnosis (CAD) systems. In recent years, various deep learning-based approaches have been proposed and demonstrated significant potential for addressing this task. However, existing deep convolutional neural networks exhibit limited long-range dependency capabilities and neglect crucial contextual information, resulting in reduced performance on detecting small-size nodules in CT scans. In this work, we propose a novel end-to-end framework called LGDNet for the detection of suspicious pulmonary nodules in lung CT scans by fusing local features and global representations. To overcome the limited long-range dependency capabilities inherent in convolutional operations, a dual-branch module is designed to integrate the convolutional neural network (CNN) branch that extracts local features with the transformer branch that captures global representations. To further address the issue of misalignment between local features and global representations, an attention gate module is proposed in the up-sampling stage to selectively combine misaligned semantic data from both branches, resulting in more accurate detection of small-size nodules. Our experiments on the large-scale LIDC dataset demonstrate that the proposed LGDNet with the dual-branch module and attention gate module could significantly improve the nodule detection sensitivity by achieving a final competition performance m...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research