Energetically stable curve fitting to hyperelastic models based on uniaxial and biaxial tensile tests

This study provides a procedure to determine stable strain energy functions in a biaxial strain space based on either uniaxial or biaxial tensile tests. Instead of conservative, strain-independent conditions, a stability region is defined in the strain space based on the sample's tensile tests, thus allowing optimisation within a wider parameter space, resulting in better approximations. An extension of the Levenberg-Marquardt algorithm incorporating user-defined stability constraints is proposed, and the constrained optimisation algorithm is applied to isotropic and anisotropic models. The uniqueness of solutions of the Fung model is also discussed. The material model parameters of stable solutions for soft tissue measurements from various literature sources are determined to demonstrate the proposed procedure. Applying appropriate constraints in the optimisation algorithm resulted in stable and physically permissible constrained solutions for the strain energy function, in contrast to the results of most unconstrained optimisation cases.PMID:38417195 | DOI:10.1016/j.jmbbm.2024.106476
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Source Type: research